首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4599篇
  免费   664篇
  国内免费   1366篇
  2024年   9篇
  2023年   217篇
  2022年   227篇
  2021年   286篇
  2020年   296篇
  2019年   320篇
  2018年   307篇
  2017年   281篇
  2016年   277篇
  2015年   240篇
  2014年   298篇
  2013年   456篇
  2012年   239篇
  2011年   269篇
  2010年   226篇
  2009年   261篇
  2008年   235篇
  2007年   268篇
  2006年   238篇
  2005年   195篇
  2004年   172篇
  2003年   154篇
  2002年   125篇
  2001年   121篇
  2000年   110篇
  1999年   79篇
  1998年   67篇
  1997年   68篇
  1996年   68篇
  1995年   72篇
  1994年   62篇
  1993年   58篇
  1992年   42篇
  1991年   43篇
  1990年   39篇
  1989年   25篇
  1988年   21篇
  1987年   22篇
  1986年   19篇
  1985年   26篇
  1984年   22篇
  1983年   9篇
  1982年   18篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   8篇
  1976年   4篇
  1975年   6篇
排序方式: 共有6629条查询结果,搜索用时 77 毫秒
1.
Protected cultivation of ornamental flowers, as a commercial venture, becomes less profitable with excessive use of fertilizers. The present study examined the influence of microbial biofilm inoculants (AnabaenaAzotobacter, AnabaenaTrichoderma and TrichodermaAzotobacter) on the availability of soil nutrients and structure of rhizosphere microbial communities in three varieties of chrysanthemum (var. White Star, Thai Chen Queen and Zembla). Varietal-specific responses in growth, enzyme activities, flower yield of plants and availability of soil nutrients were recorded. Dehydrogenase activity was highest in var. White Star treated with the AnabaenaTrichoderma biofilm inoculants. The AnabaenaAzotobacter inoculant enhanced the availability of nitrogen, phosphorus and micronutrients in the soil, besides 40–50% increase in soil organic carbon, as compared to carrier alone or no inoculation. PCR-DGGE profiling of the cyanobacterial communities and qPCR quantification of 16S rRNA abundance of bacteria, archaea and cyanobacteria in the rhizosphere soils, revealed the stronger influences of these inoculants, especially in var. Zembla. Principal Component Analysis (PCA) helped to illustrate that the enhanced microbe-mediated availability of soil macro-and micronutrients, except iron content (Fe), was the most influential factor facilitating improved plant growth and yield parameters. The AnabaenaAzotobacter, and Anabaena–Trichoderma biofilm inoculants, proved superior in all three chrysanthemum varieties.  相似文献   
2.
3.
4.
Larvae of the scarabaeid, Cyclocephala hirta, are major pests of turfgrass in California. A field test was conducted against third instars that included the following treatments: untreated control; chemical insecticide (bendiocarb); milky disease bacterium (Bacillus popilliae); and entomopathogenic nematodes (Steinernema feltiae and Heterorhabditis bacteriophora). There were no significant differences in population reduction among the treatments, but the larval population in all plots showed a dramatic decline. The C. hirta population had a natural occurrence of milky disease and blue disease caused by Rickettsiella popilliae. The prevalence of blue disease during the course of the study averaged < 10% but that of milky disease averaged about 20%. More significantly, the soil from all treatment plots when bioassayed for B. popilliae showed that 67–90% of the larvae became infected with this bacterium. None of the larvae became infected with the blue disease organism. We conclude that B. popilliae was occurring in epizootic proportions in our field tests and was a significant mortality factor in causing the decline of the C. hirta population.  相似文献   
5.
A. J. Boulton 《Hydrobiologia》1991,211(2):123-136
Eucalypt leaf packs were placed at two sites in an intermittent stream during summer to examine the hypothesis that terrestrially-exposed leaf litter accumulates a richer microbial flora than submerged leaves — a phenomenon observed in Canadian temporary vernal pools. This did not occur; during the experiment, microbial biomass (as ATP) rose steadily on submerged leaves but remained low on terrestrially-exposed leaves. Densities of most functional feeding groups on the submerged leaves increased with time. Scrapers appeared to be more important than shredders in eucalypt leaf breakdown at both sites.  相似文献   
6.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
7.
8.
Understanding the patterns of genetic variations within fertility‐related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca2+/calmodulin‐dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46–0.64 × 10?9 nucleotide substitutions/site/year), whereas the testis‐specific CaS gene, which is predominantly expressed in post‐meiotic cells, evolves at least three to four times faster (1.48–1.98 × 10?9 substitutions/site/year). Concomitantly, maximum‐likelihood‐based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis‐specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC‐biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC‐biased gene conversion in the evolution of CaS that mimics positive selection.  相似文献   
9.
We critically review the two major theories of adaptive evolution developed early in this century, Wright's shifting balance theory and Fisher's large population size theory, in light of novel findings from field observations, laboratory experiments, and theoretical research conducted over the past 15 years. Ecological studies of metapopulations have established that the processes of local extinction and colonization of demes are relatively common in natural populations of many species and theoretical population genetic models have shown that these ecological processes have genetic consequences within and among local demes. Within demes, random genetic drift converts nonadditive genetic variance into additive genetic variance, increasing, rather than limiting, the potential for adaptation to local environments. For this reason, the genetic differences that arise by drift among demes, can be augmented by local selection. The resulting adaptive differences in gene combinations potentially contribute to the genetic origin of new species. These and other recent findings were not discussed by either Wright or Fisher. For example, although Wright emphasized epistatic genetic variance, he did not discuss the conversion process. Similarly, Fisher did not discuss how the average additive effect of a gene varies among demes across a metapopulation whenever there is epistasis. We discuss the implications of such recent findings for the Wright-Fisher controversy and identify some critical open questions that require additional empirical and theoretical study.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号